Take Flight with Exterior Aerospace Coatings

Aerospace coatings for exterior applications require a demanding set of performance attributes to provide acceptable performance from both a functional and aesthetic standpoint. In many cases the cost of a new commercial aircraft can be over $300 million with the expectation of lasting several decades with flight times of 4,000 hours or more on an annual basis. According to GMI, the aerospace coating market size is estimated to surpass $1 Billion in sales by 2024.

Read about the challenges of formulating aerospace exterior coatings in the Prospector Knowledge Center.

  • Ability to maintain adhesion and flexibility when subject to rapid temperature changes from 120F to – 70F in a matter of a few minutes
  • Resistance to hydraulic fluids including Skydrol, diesel fuel, lubricating oils and deicing fluids
  • Resist degradation when exposed to intense UV light at high altitudes
  • Repeated dry hot and cold moist cycles
  • Outstanding corrosion resistance as aircraft are often operated in marine and industrial environments
  • High degree of flexibility and resistance to stress as a result of turbulence, vibration and wing flexing
  • Abrasion and erosion resistance and paint from dirt and sand at sub and supersonic speeds
  • Infrared (IR) reflectivity (military applications)
  • Low density (offers weight savings)
  • Icephobic
  • Low COF

Looking for materials for aerospace coatings formulations?

UL Prospector® has nearly 100 listings for resins, pigments, adhesives, and base formulations for use in aerospace coatings. Get technical data, request samples, and contact suppliers now.

Search aerospace coatings materials


The substrate for the fuselage and aircraft skin is predominantly AA 2024 aluminum. AA 2024 is an alloy of copper and aluminum. The copper provides an increase in the strength to weight relationship, however it is also detrimental to corrosion resistance. Weight reduction is an enormous driving force in new aircraft design as it equates to fuel savings, speed and range. Composites, fiber metal laminates and aluminum-lithium alloys are being used on an increasing basis.

A number of cleaning/pretreatment types (historically hexavalent chrome-based) provide a thin protective layer to improve corrosion resistance as well as receptivity of subsequent coats as it increases surface tension and polarity of the surface.

  • Organic Coatings typically include a primer, pigmented basecoat and a clearcoat.
  • Primers are typically organic solventborne and waterborne two-component epoxy-polyamine/polyamide types containing extenders, additives, catalysts and are further fortified with corrosion inhibitive pigments.

Common types of corrosion on aircraft include filiformpitting, intergranular, exfoliation, stress cracking, galvanic and crevice corrosion. All these types of corrosion are exacerbated by moisture, salt, thermocycling and direct contact of metals differing in metallic content.

Common corrosion inhibitive pigments historically used in aerospace primers include barium chromate and strontium chromate. Epoxy resins for the most part are combinations of bisphenol A and bisphenol F types. When formulated with suitable crosslinking agents (normally amine or amido-amine type) epoxy-based primers provide excellent adhesion, corrosion resistance and chemical resistance.

Filiform Corrosion on Coated Aluminum - learn about exterior aerospace coatings in the Prospector Knowledge Center.
Figure 1. Images of Filiform Corrosion on Coated Aluminum
Cross-section of Aerospace Coating Layers - learn about exterior aerospace coatings in the Prospector Knowledge Center.
Figure 1a. Cross-section of Aerospace Coating Layers
Typical epoxy resins and epoxy functional reactive diluents used in aerospace primers. Learn more about aerospace exterior coatings in the Prospector Knowledge Center.
Figure 2. Typical epoxy resins and epoxy functional reactive diluents used in aerospace primers
Reactions of epoxy resins with amino functionalities - learn about exterior aerospace coatings in the Prospector Knowledge Center.
Figure 3 Reactions of epoxy resins with amino functionalities

Aerospace exterior topcoats are two-component urethane types comprised of hydroxyl functional resins [polyesters, acrylics or fluorinated ethylene vinyl ethers (FEVE)] reacted with isocyanate prepolymer(s). Typical curing reactions are as follow:

Reactions of polyols with isocyanate functional cross-linkers - learn about exterior aerospace coatings in the Prospector Knowledge Center.
Figure 4 Reactions of polyols with isocyanate functional cross-linkers

Due to the demanding requirements of aerospace coating systems, chemists use a stoicheometric excess of isocyanate crosslinker to provide excellent chemical resistance. The excess isocyanate crosslinker reacts with moisture to decarboxylate to form a polyurea upon further reaction. Typically a 50 percent or more stoichiometric excess of isocyanate is used to ensure a high degree of polyurea formation.

Polyureas are known for their superb resistance to aggressive fluids such as Skydrol (an aircraft hydraulic fluid). Polyester polyolsare used primarily in the pigmented basecoat portion of the two component polyurethane coating, whereas acrylic polyols and also FEVE-based polyols are primarily used in the clearcoat portion of the polyurethane topcoat.

Clearcoats are further fortified with both UV absorbers as well as hindered amine light stabilizers to further protect the coating system from degradation due to exposure to intense upper atmosphere UV light.

Isocyanate crosslinkers are typically derived from hexmethylene diisocyante (HMDI) and/or isophorone isocyanate (IPDI). The former type provides flexibility, whereas the latter can provide improved hardness.

Biuret formed from the reaction of three HMDI molecules - learn about exterior aerospace coatings in the Prospector Knowledge Center.
Figure 5 Biuret formed from the reaction of three HMDI molecules
Isocyanurate formed from the reaction of three HMDI molecules - Prospector Knowledge Center
Figure 6 Isocyanurate formed from the reaction of three HMDI molecules
Uretdione formed from two HMDI molecules, as used in exterior aerospace coatings
Figure 7 Uretdione formed from two HMDI molecules
Isophorone Diisocyanate - learn about its use in exterior aerospace coatings in the Prospector Knowledge Center
Figure 8 Isophorone Diisocyanate

Isocyanurate-based isocyanate cross linkers provide excellent weathering characteristics when reacted with a suitable polyol resin system and are thus widely used in aerospace topcoats.

Recent innovations and project emphasis in aerospace coatings include chrome-free pretreatment-primers and chrome-free epoxy primers. Drag-reducing topcoats that provide a 1 percent improvement in fuel efficiency can lower fuel costs by $700 million a year, according to the International Air Transport Association (IATA). On average, airlines incur about $100 a minute per flight in total operating costs, IATA says. Therefore, even saving just one minute of flight time could reduce total industry operating costs by more than $1 billion a year and significantly reduce environmental emissions.

Further Reading:

References:

  • Active Protective Coatings, Springer et.al., 2016
  • Organic Coatings Science and Technology, 3rd Edition, Wicks et.al, 2007

Get a Reaction with Urethane Coatings

Polyurethanes coatings have come a long way since their invention by Otto Bayer and coworkers in 1937. Depending on the choice of oligomeric and polymeric materials, these paints are used in a variety of demanding high performance applications due to their versatility. They can be hard or soft, flexible or rigid, resistant to chemicals and provide excellent adhesion.

Polyurethane properties and applications

  • Outstanding moisture and corrosion resistance
  • Flexible primers and topcoats
  • Weather resistance (aliphatic polyisocyanate with suitable durable polyol)
  • Resistance to acid rain and other chemicals
  • One component
  • Two component
  • Waterborne one component bake finishes
  • 100% solids
  • Powder coatings
  • Waterborne ambient cure two component finishes

Polymeric and isocyanate prepolymer components include one or more isocyanate prepolymers and one or more polymeric or oligomeric components containing hydroxy functionality or other active hydrogen group. Isocyanates are reactive with functionalities which include:

  • Hydroxy
  • Amino
  • Imino
  • Ketimene
  • Carboxyl (forms CO2)
  • Urethanes
  • Ureas
  • Acetoacetylated resins

The active hydrogen for exterior weatherable coatings is normally an aliphatic hydroxyl group in a polyester or acrylic polymer. Alcohols and phenols react with an isocyanate to form urethanes.


Need help finding polyurethane coatings?

Prospector can help speed along your research with technical datasheets and access to global equipment suppliers.

Search polyurethane coatings here


Urethane reactions

In the following reaction, R1 and R2 can be aliphatic or aromatic.

R1-R2-aliphatic-or-aromatic formula - Learn more about polyurethane coatings

The urethane reaction is reversible at higher temperatures. For baking systems such as those using blocked isocyanates, excessive bake temperature can result in embrittlement, color change and a decrease in moisture and corrosion resistance.

As a general rule, reaction rates for urethane formation is in the following order:

primary hydroxyl > secondary hydroxyl > tertiary hydroxyl. The reverse reaction rate is the inverse of the forward reaction. For example urethanes from tertiary hydroxyls are relatively unstable.

Once formed, urethanes can react further with isocyanates to form allophanates:

Allophonates formula - Learn more about polyurethane coatings

Other ambient cure reactions of an isocyanate and polyol follow:

isocyanate-polyol - Learn more about polyurethane coatings

As illustrated above, the desired crosslinking reaction between a polyol and an isocyanate to form a polyurethane involves multiple competing reactions. For this reason, two-component formulations with polyol in one component and isocyanate in a second component are normally formulated with a 10% or more stoichiometric excess of isocyanate to overcome competing reactions with moisture and other possible reactants.

Polyurethane catalysts

Catalysts for polyurethanes include tin based carboxylates such as dibutyl tin dilaurate, dibutyl tin octoate or tertiary amines such a DABCO [N2(C2H4)3]. For toxicity concerns, there are also tin-free catalysts based on bismuth neodecanoate, bismuth 2-ethylhexanoate or other metal carboxylates.

Isocyanates and polyisocyanates

There are multiple aliphatic and aromatic polyisocyanates available for use in ambient cure two-component solvent born, 100% solid liquid or powder, as well as waterborne paints. Blocked isocyanates are used in single component baked coatings as they unblock at an elevated temperature to activate the isocyanate group. The reaction sequence is first unblocking and then addition. Polyurethanes formed from aromatic isocyanates are used primarily in primers and interior coatings due to poor light stability, but excellent moisture and corrosion resistance.

Common aliphatic and aromatic polyisocyanate building blocks include:

polyisocyanate building blocks formulas - - Learn more about polyurethane coatings

HDI and IPDI are used to synthesize higher molecular weight isocyanate prepolymers which may include isocyanurates, allophanates and uretdiones to improve hygiene, handling and weathering properties.

Isocyanates can be blocked to form a stable material for use as a crosslinker in single component polyurethane coatings. Blocked isocyanates are used extensively in powder, waterborne and high solids baking finishes for coil primers, automotive coatings and electrodeposition coatings. Common blocking agents include 2-ethylhexanol, e-caprolactone, methyl ethyl ketoxime and 2-butoxy ethanol. When mixed with a polyol, blocked isocyanates are stable until they reach the unblocking temperature and then eliminate the blocking agent and react with the polyol to form a polyurethane.

Waterborne two component urethane coatings can be made using water dispersible isocyanates. Water dispersible IPDI or HDI based isocyanates are commercially available and are made by reacting a portion of the isocyanate groups with polyethylene glycol monoether. The polyisocyanate is then added into a separate dispersion containing the polyol to form separate dispersed particles that crosslink and form a film.

Iso-free technology

Isocyanate-based technology has come under increased scrutiny as exposure to isocyanates can cause asthma and other respiratory issues. Occupational asthma has overtaken asbestosis as the leading cause of new work-related lung disease. Isophorone free technology provides polyurethane formation without exposure to free isocyanate. In the last few years isofreetechnologies have emerged that do not utilize isocyanate crosslinkers to form  a polyurethane and thus eliminate isocyanate exposure. Isofree 2K technology utilizing polycarbonate and polyaldehyde for example includes improved sprayable pot life and rapid cure and early hardness. Technologies that form polyurethanes without the use of an isocyanate crosslinker follow:

  1. Hexamethoxy methyl melamine + Polycarbonate → Polyurethane
polyurethane formula - Learn more about polyurethane coatings
  1. Polycarbonate + Polyamine → Polyurethane
polyurethane formula - Learn more about polyurethane coatings
  1. Polycarbamate + Polyaldehyde → Polyurethane
polyurethane formula - Learn more about polyurethane coatings

The formation of polyurethanes in reactions #1 and #2 are sluggish at room temperature, whereas the reaction rate of #3 that utilizes the crosslinking reaction of a polycarbonate and a polyaldehyde is more facile. Polyurethane formation by this reaction route provides a longer sprayable pot life and at the same time a faster reaction rate after application than that provided by the use of an isocyanate crosslinker.

Sources:

Prospector Knowledge Center and Search Engine

Polyurethanes. (2017). The Essential Chemistry Industry – online.

Mahendra, Vidhura. (2016). Foam making via pine resins. 10.13140/RG.2.1.2065.0004.

Wikepedia. Polyurethane.

John Argyropoulos, Nahrain Kamber, David Pierce, Paul Popa, Yanxiang Li and Paul Foley. Dow Isocyanate Free Polyurethane Coatings – Fundamental Chemistry and Performance Attributes, European Coatings Conference, April 21, 2015.

Zeno W. Wicks Jr., Frank N. Jones, Socrates Peter Pappas, Douglas A. Wicks. (2007). Organic Coatings: Science and Technology, Third Edition.

Wiley, Jones e.al. (2017) Organic Coatings, Science and Technology, Third Edition.